5,286 research outputs found

    Biomarkers in emergency medicine

    Get PDF
    Researchers navigate the ocean of biomarkers searching for proper targets and optimal utilization of them. Emergency medicine builds up the front line to maximize the utility of clinically validated biomarkers and is the cutting edge field to test the applicability of promising biomarkers emerging from thorough translational researches. The role of biomarkers in clinical decision making would be of greater significance for identification, risk stratification, monitoring, and prognostication of the patients in the critical- and acute-care settings. No doubt basic research to explore novel biomarkers in relation to the pathogenesis is as important as its clinical counterpart. This special issue includes five selected research papers that cover a variety of biomarker- and disease-related topics

    Correlated Dirac Particles and Superconductivity on the Honeycomb Lattice

    Full text link
    We investigate the properties of the nearest-neighbor singlet pairing and the emergence of d-wave superconductivity in the doped honeycomb lattice considering the limit of large interactions and the t−J1−J2t-J_1-J_2 model. First, by applying a renormalized mean-field procedure as well as slave-boson theories which account for the proximity to the Mott insulating state, we confirm the emergence of d-wave superconductivity in agreement with earlier works. We show that a small but finite J2J_2 spin coupling between next-nearest neighbors stabilizes d-wave symmetry compared to the extended s-wave scenario. At small hole doping, to minimize energy and to gap the whole Fermi surface or all the Dirac points, the superconducting ground state is characterized by a d+idd+id singlet pairing assigned to one valley and a d−idd-id singlet pairing to the other, which then preserves time-reversal symmetry. The slightly doped situation is distinct from the heavily doped case (around 3/8 and 5/8 filling) supporting a pure chiral d+idd+id symmetry and breaking time-reversal symmetry. Then, we apply the functional Renormalization Group and we study in more detail the competition between antiferromagnetism and superconductivity in the vicinity of half-filling. We discuss possible applications to strongly-correlated compounds with Copper hexagonal planes such as In3_3Cu2_{2}VO9_9. Our findings are also relevant to the understanding of exotic superfluidity with cold atoms.Comment: 13 pages, 8 figure

    Nonfrustrated magnetoelectric with incommensurate magnetic order in magnetic field

    Full text link
    We discuss a model nonfrustrated magnetoelectric in which strong enough magnetoelectric coupling produces incommensurate magnetic order leading to ferroelectricity. Properties of the magnetoelectric in magnetic field directed perpendicular to wave vector describing the spin helix are considered in detail. Analysis of classical energy shows that in contrast to naive expectation the onset of ferroelectricity takes place at a field Hc1H_{c1} that is lower than the saturation field Hc2H_{c2}. One has Hc1=Hc2H_{c1}=H_{c2} at strong enough magnetoelectric coupling. We show that at H=0 the ferroelectricity appears at T=TFE<TNT=T_{FE}<T_N. Qualitative discussion of phase diagram in H−TH-T plane is presented within mean field approach.Comment: 12 pages, 3 figures, accepted in JET

    Circulating Biologically Active Adrenomedullin Predicts Organ Failure and Mortality in Sepsis

    Get PDF
    BACKGROUND: Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. Biologically active adrenomedullin (bio-ADM) is an emerging biomarker for sepsis. We explored whether bio-ADM concentration could predict severity, organ failure, and 30-day mortality in septic patients. METHODS: In 215 septic patients (109 patients with sepsis; 106 patients with septic shock), bio-ADM concentration was measured at diagnosis of sepsis, using sphingotest bio-ADM (Sphingotec GmbH, Hennigsdorf, Germany) and analyzed in terms of sepsis severity, vasopressor use, and 30-day mortality. The number of organ failures, sequential (sepsis-related) organ failure assessment (SOFA) score, and 30-day mortality were compared according to bio-ADM quartiles. RESULTS: Bio-ADM concentration was significantly higher in patients with septic shock, vasopressor use, and non-survivors than in patients with solitary sepsis, no vasopressor use, and survivors, respectively (all P&lt;0.0001). Bio-ADM quartiles were associated with the number of organ failures (P&lt;0.0001), as well as SOFA cardiovascular, renal, coagulation, and liver subscores (all P&lt;0.05). The 30-day mortality rate showed a stepwise increase in each bio-ADM quartile (all P&lt;0.0001). Bio-ADM concentration and SOFA score equally predicted the 30-day mortality (area under the curve: 0.827 vs 0.830). CONCLUSIONS: Bio-ADM could serve as a useful and objective biomarker to predict severity, organ failure, and 30-day mortality in septic patients

    General Relation between Entanglement and Fluctuations in One Dimension

    Full text link
    In one dimension very general results from conformal field theory and exact calculations for certain quantum spin systems have established universal scaling properties of the entanglement entropy between two parts of a critical system. Using both analytical and numerical methods, we show that if particle number or spin is conserved, fluctuations in a subsystem obey identical scaling as a function of subsystem size, suggesting that fluctuations are a useful quantity for determining the scaling of entanglement, especially in higher dimensions. We investigate the effects of boundaries and subleading corrections for critical spin and bosonic chains.Comment: 4 pages, 2 figures. Minor changes, references added

    Transforming the complexity of a theoretical framework into an experiental design methodology for designers

    Get PDF
    In design, a wide range of design tools and techniques that are derived from theoretical frameworks have been developed. However, there are only a few that consider the perceptual qualities involved in interaction. Although existing tools are widely adopted, designer’s need for considering theoretical notions of ecological perception (Gibson, 1986), embodied interaction (Dourish, 2011) and affordances (Gibson, 1986; Norman, 1988; Hartson, 2003) has not been addressed in the context of design tools. This paper describes the development of an experiential design method card system based on the Interaction Frogger framework (Wensveen, 2004). The design method card supports designers to better understand the perceptual qualities of interaction design and convey this knowledge into their design processes. First, we introduce various theoretical frameworks that deal with perceptual qualities within interaction design, particularly focusing on the Interaction Frogger framework. Consequently, we investigate how a complex theoretical framework can be translated into practice utilising a design tool, by examining a case study of developing a set of design method cards. This set of method cards was examined by means of focus group sessions with design researchers and redesign exercises with designers and design students from various backgrounds. Throughout the redesign exercise, the experiential nature of the method cards system helped designers and design students to gain insights into perceptual information exchanges that emerge between objects and users. Furthermore, the method cards gave them a systematic platform for these insights to be reapplied into their design process. Overall, the design method card system provides opportunities for design practitioners, researchers, and students to explore perceptual qualities within the interaction design space and further an opportunity to utilize theoretical knowledge in a practical design process

    Comparing Results of Five Glomerular Filtration Rate-Estimating Equations in the Korean General Population. MDRD Study, Revised Lund-Malmö, and Three CKD-EPI Equations

    Get PDF
    Estimated glomerular filtration rate (eGFR) is a widely used index of kidney function. Recently, new formulas such as the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equations or the Lund-Malmö equation were introduced for assessing eGFR. We compared them with the Modification of Diet in Renal Disease (MDRD) Study equation in the Korean adult population. METHODS: The study population comprised 1,482 individuals (median age 51 [42-59] yr, 48.9% males) who received annual physical check-ups during the year 2014. Serum creatinine (Cr) and cystatin C (CysC) were measured. We conducted a retrospective analysis using five GFR estimating equations (MDRD Study, revised Lund-Malmö, and Cr and/or CysC-based CKD-EPI equations). Reduced GFR was defined as eGFR &lt;60 mL/min/1.73 m². RESULTS: For the GFR category distribution, large discrepancies were observed depending on the equation used; category G1 (≥90 mL/min/1.73 m²) ranged from 7.4-81.8%. Compared with the MDRD Study equation, the other four equations overestimated GFR, and CysC-based equations showed a greater difference (-31.3 for CKD-EPI(CysC) and -20.5 for CKD-EPI(Cr-CysC)). CysC-based equations decreased the prevalence of reduced GFR by one third (9.4% in the MDRD Study and 2.4% in CKD-EPI(CysC)). CONCLUSIONS: Our data shows that there are remarkable differences in eGFR assessment in the Korean population depending on the equation used, especially in normal or mildly decreased categories. Further prospective studies are necessary in various clinical settings

    Time-reversal symmetry breaking in circuit-QED based photon lattices

    Full text link
    Breaking time-reversal symmetry is a prerequisite for accessing certain interesting many-body states such as fractional quantum Hall states. For polaritons, charge neutrality prevents magnetic fields from providing a direct symmetry breaking mechanism and similar to the situation in ultracold atomic gases, an effective magnetic field has to be synthesized. We show that in the circuit QED architecture, this can be achieved by inserting simple superconducting circuits into the resonator junctions. In the presence of such coupling elements, constant parallel magnetic and electric fields suffice to break time-reversal symmetry. We support these theoretical predictions with numerical simulations for realistic sample parameters, specify general conditions under which time-reversal is broken, and discuss the application to chiral Fock state transfer, an on-chip circulator, and tunable band structure for the Kagome lattice.Comment: minor revisions, version published in PRA; 19 pages, 13 figures, 2 table
    • …
    corecore